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Abstract 

Early work within the Aqua validation activity revealed there to be large differences in water 

vapor measurement accuracy among the various technologies in use for providing validation data. 

The validation measurements were made at globally distributed sites making it difficult to isolate 

the sources of the apparent measurement differences among the various sensors, which included 

both Raman lidar and radiosonde. Because of this, the A I R S  Water Vapor Experiment-Ground 

(AWEX-G) was held in October - November, 2003 with the goal of bringing validation technolo- 

gies to a common site for intercomparison and resolution of the measurement discrepancies. Using 

the University of Colorado Cryogenic Frostpoint Hygrometer (CFH) as the water vapor reference, 

the AWEX-G field campaign resulted in new correction techniques for both Raman lidar, Vaisala 

RS80-H and RS90/92 measurements that significantly improve the absolute accuracy of those mea- 

surement systems particularly in the upper troposphere. Mean comparisons of radiosondes and 

lidar are performed demonstrating agreement between corrected sensors and the CFH to generally 

within 5% thereby providing data of sufficient accuracy for Aqua validation purposes. Examples 

of the use of the correction techniques in radiance and retrieval comparisons are provided and 

discussed. 
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2 Introduction and Background 

The Aqua satellite validation activity funded by NASA includes the use of different water vapor 

profiling radiosondes and Raman lidar systems for acquisition of measurements during Aqua over- 

passes. Numerous special measurement campaigns have been staged in order to acquire data of 

the highest quality for calibration and validation of the satellite measurements and retrievals. It is 

fundamentally important that these special datasets possess higher absolute accuracy than required 

of the satellite data products for t h s  validation technique to work. Early comparisons of many vali- 

dation measurements with the Atmospheric Infrared Sounder (AIRS), through the use of the AIRS 

fast forward radiative transfer model, SARTA [7], revealed apparent large calibration differences 

among the various water vapor profiling technologies being used. The differences were largest in 

the upper troposphere (UT) where differences between AIRS radiances and calculations of AIRS 

radiance using SARTA, when translated to UT relative humidity (RH), implied differences in the 

calibration of the water vapor measurement systems that exceeded 25% in some cases. This is 

to be contrasted with the Aqua retrieval accuracy goal, where a retrieval involves a minimization 

of differences between observed and calculated radiances, of 10% in 2 krn layers. The apparent 

inadequacy of many of the validation measurement systems to provide data of sufficient quality 

to validate retrievals at this accuracy level created questions both about the validation sensor tech- 

nologies and how to improve the quality of water vapor measurements used for Aqua validation. 



For t h s  reason, a dedicated field program called the A I R S  Water Vapor Experiment - Ground 

(AWEX-G) was held in October - November, 2003 with the goal of resolving the measurement 

differences observed among Vaisala radiosonde and Raman lidar and to develop new analytical 

tools to improve the absolute accuracy of those measurement systems. 

This paper provides the motivation for the AWEX field campaign, discusses the field activi- 

ties and the major results of the field activity and then puts those results in the context of Aqua 

validation. It is organized as follows. Early AIRS radiance validation comparisons are presented 

to illustrate some of the first discrepancies that were uncovered in the validation activity and that 

helped to motivate AWEX-G. The AWEX-G field campaign is then described and the major results 

summarized. This paper will focus mostly on the Raman lidar measurements and results, which 

included new corrections to Raman lidar upper tropospheric water vapor measurements. A com- 

panion paper [5] provides the details of the radiosonde intercomparisons and radiosonde accuracy 

assessment that occurred during AWEX-G and new correction techniques for Vaisala RS80-H and 

RS90/92 measurements that were derived from AWEX measurements. The radiosonde and lidar 

sensors are compared here both in terms of profiles and layer mean upper tropospheric precipitable 

water. These results are compared with the corresponding results from a similar lidarhadiosonde 

intercomparison experiment that was held in 2000. The effect of the new Raman lidar and ra- 

diosonde corrections on Aqua validation activities is then demonstrated using examples of both 

radiance and retrieval comparisons. 

6 



3 Early discrepancies between Raman lidar and radiosonde mea- 
surements and AIRS 

NASA has funded special launches of Vaisala RS90 radiosondes to coincide with Aqua satel- 

lite overpasses of the DOE Department of Energy (DOE) Atmospheric Radiation Measurements 

(ARM) facilities on the North Slope of Alaska (NSA), the Southern Great Plains (SGP) and the 

Tropical Western Pacific (TWP). A total of 90 overpasses were targeted in each of three sets of 

these special launches with the goal of providing validation data in a variety of seasons and from 

different geographic locations [8]. For each targeted satellite overpass, the goal was to launch two 

radiosondes separated in time so that one was in the upper troposphere and one in the lower tro- 

posphere at the actual time of overpass. Using these sonde measurements and other ancillary data, 

a best estimate (BE) product is generated that performs a temporal and spatial interpolation over 

an Aqua retrieval region [8]. This database is one of the main sources of validation data for the 

Aqua validation activity. 

Other validation measurement campaigns were held including one at NASNGoddard Space 

Flight Center (GSFC) in the fall of 2002 involving water vapor, temperature and pressure measure- 

ments coordinated with 26 nighttime overpasses of the Aqua satellite under both clear and partially 

cloudy conditions. For these measurements, the Scanning Raman Lidar ( S U )  was used for the 

water vapor profiles, Sippican radiosonde for temperature and pressure profiles and SuomiNet 

Global Positioning System (GPS) [ 171 for the total precipitable water. The Raman lidar profiles 
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were calibrated so that the integrated water vapor amount agreed with the total precipitable water 

measured by GPS [20]. 

The BE product generated from the first set of the special Aqua radiosonde launches and the 

GSFC validation data were among those validation data sources studied in early 2003 using ver- 

sion 3 of SARTA. Figure 1 presents a comparison of the mean brightness temperature differences 

between AIRS measurements (denoted "Obs") and the output of version 3 of SARTA (denoted 

Talc"), where the water vapor profile used in SARTA was one of the validation datasets, for three 

different sets of AIRS observations. The range of frequencies displayed covers the water band. 

The first comparison, shown with a solid line, is the mean difference (in degrees K of equiva- 

lent brightness temperature) between 82 AIRS fields of view (FOV) from 15 different overpasses 

of NASNGSFC between September and November, 2002 and the SARTA-calculated brightness 

temperature based on the corresponding GSFC SRL water vapor and Sippican radiosonde tem- 

perature measurements. The second, shown with a dashed line is the mean difference between 

approximately 41 0 A I R S  FOVs from approximately 75 different nighttime overpasses of the ARM 

SGP site in late 2002 and the calculations based on the BE product using Vaisala RS90 data as 

water vapor input. The third set of measurements, shown in a dash-dot style, is similar to the sec- 

ond set except that it focusses on daytime overpasses of SGP during the same time period. Manual 

cloud-clearing has been performed on these ensembles. 

In general the water vapor line strengths increase moving toward higher wavenumbers in the 
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water band shown in figure 1. Therefore, progressing from lower to higher wavenumbers, the 

equivalent brightness temperature, BT, for spectral locations that correspond to the centers of 

water vapor absorption lines will increasingly be influenced by the amount of water vapor present 

in the upper troposphere and lower stratosphere. Between the lines, where absorption is lower, the 

brightness temperatures reflect water vapor concentrations lower in the atmosphere. Thus, given 

perfect knowledge of trace gas and continuum absorption spectra and accurate radiative transfer 

calculations based on them, differences in BT in figure 1 either on the line centers or in between 

the lines can be taken to represent differences in the amount of water vapor inducing the radiances 

measured by AIRS (Obs) and the water vapor measured by the validation sensor (Calc). 

Several points can be made from figure 1. The first is that approximately a 25% range in ap- 

parent water vapor calibration is implied by the -2K uncertainty observed through much of the 

water band using the approximate rule of thumb that a 1K difference in brightness temperature in 

the upper troposphere corresponds to a relative difference in UT water vapor amount of approx- 

imately 12% [6] (12% absolute, not to be confused with a difference of 12% RH). It should be 

mentioned here that Obs-Calc comparisons based on other Aqua validation datasets (not shown), 

some acquired using Vaisala RS90s as well, implied even larger uncertainties in apparent water 

vapor calibration. The correlation of the high frequency structure in all the measurements seen in 

figure 1 implied, considering that the radiosonde and lidar measurements were acquired from dif- 

ferent locations and at different times, that there likely were errors in the absorption cross sections 
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of the water vapor lines used in SARTA. But, given the 2K range of brightness temperature differ- 

ences displayed in figure 1, it was not clear what should be used as validation data to help isolate 

the spectroscopy errors and to judge the overall accuracy of SARTA calculations. The questions 

of what data source to use for AIRS validation seemed largest in the upper troposphere where cold 

temperatures make reliable radiosonde measurements of water vapor more difficult and since the 

disagreement of the measurements shown in figure 1 was largest in the higher wavenumber portion 

of the water band, which corresponds roughly to the upper troposphere. 

These large apparent discrepancies in water vapor measurements were contrasted, however, 

with previous field mission experience that indicated that it was possible for several water vapor 

sensors to be used in a coordinated fashion over a period of several weeks at the same location 

and achieve mean upper tropospheric water vapor calibration in agreement at the +/- 5% level. 

This was the result of the ARM-First International Satellite Cloud Climatology Project (ISCCP) 

Regional Experiment (FIRE) Water Vapor Experiment (AFWEX), which was held in the fall of 

2000 at the DOE ARM SGP Climate Research Facility (CRF) site in northern Oklahoma [3]. 

The sensors that agreed at the 5% level from AFWEX were the airborne NASA LaRC Lidar 

Atmospheric Sensing Experiment (LASE) water vapor lidar and Diode Laser Hygrometer (DLH), 

the Vaisala RS80-H radiosonde (after application of corrections for calibration bias and sensor 

time-lag), the DOE CART Raman Lidar (CARL) and the SRL. Although, the SRL was one of the 

instruments that was found to agree with the reference sensor to within 5%, the SRL hardware 
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configuration changed between the time of AFWEX and the fall of 2002 when the Aqua validation 

measurements shown in figure 1 were performed. Therefore, there was uncertainty about the cur- 

rent calibration of the SRL upper tropospheric measurements. Also, the Vaisala RS90 radiosonde 

was not tested during AFWEX. The RS90 calibration accuracy, time-response, and susceptibility 

to sensor icing in clouds is improved substantially over those of the RS80-H and the RS90 has had 

changes in its calibration model in the time between AFWEX and the present [ 5 ] .  And finally the 

CARL lidar began to experience degradation in its performance in mid-2001 making conclusions 

about it’s performance after this date based on AFWEX results difficult. Therefore, instrument 

alterations, degradations or calibration changes implied that it was not possible to apply the results 

of AFWEX to help resolve the measurement differences illustrated in figure 1. The AWX-G field 

campaign thus was held with the goal of providing AFWEX quality accuracy assessments of water 

vapor measurement technologies in the Aqua era. 

4 AIRS Water Vapor Experiment-Ground 

Drawing on the success of the AFWEX field campaign, the AIRS Water Vapor Experiment - 

Ground (AWEX-G) was held at the ARM SGP site between October 27 and November 16,2003 

in order to: 

1. Bring a majority of the water vapor measurement technologies in use for Aqua and AIRS 

validation together at the ARM SGP site for intercomparison. The technologies that were 
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used during AWEX-G included radiosondes (of various technologies including frostpoint 

hygrometer), Raman lidars, GPS (Global Positioning System) and microwave radiometer 

(MWR). 

2. Operate these instruments over a three-week period of time focussing on nighttime, clear 

weather conditions including many instances of multiple radiosondes launched on the same 

balloon. The nighttime period was chosen so as to permit Raman lidar measurements to 

extend into the upper troposphere and also to avoid the issues relating to daytime heating of 

radiosondes that can create a dry bias in the measurements [5] .  

3. Characterize the measurement differences of the water vapor technologies and use this in- 

formation to better understand the existing differences in the Aqua validation activity and to 

develop schemes for improving the accuracies of those measurements. 

The "G" designation in the name AWEX-G indicated the possibility that ground-based measure- 

ments alone might not resolve the measurement discrepancies that motivated AWEX-G and that 

it might be necessary in the future to hold another experiment involving airborne instrumentation. 

The fall period was chosen for AWEX-G since this is the season that offers the highest probability 

of clear skies due to the frequency strong frontal passages. It also was the season during which 

AFWEX occurred. 

During AWEX-G, 56 balloons carrying 112 radiosonde packages were launched. The ra- 

diosonde technologies that were tested were: Vaisala RS80-H, RS90, RS92, University of Colorado 
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- Cryogenic Frost point Hygrometer CFH) [ 151, Meteolabor SnowWhite hygrometer [ 161, Modem 

GL98 (manufactured in France) and Sippican Mark IIa (formerly VIZ). In addition, more than 40 

hours of Scanning Raman Lidar measurements of water vapor were acquired in coordination with 

the radiosonde launches. The DOE CRF Raman Lidar (CARL) [9] ran continuously through the 

experiment as did the C W  Microwave Radiometer (MWR) and a SuomiNet GPS system that was 

deployed along with the SRL and was the source of calibration of the SRL profiles from the fall 

2002 measurements. It was determined early in the AWEX-G effort, however, that the CARL lidar 

did not appear to be operating nominally. It was later found that degradation of the system had 

significantly affected its water vapor measurement capability such that CARL data were not useful 

for Aqua validation. The CARL data are therefore not included in this analysis. CARL refurbish- 

mer,t was completed in June 2004 and the initial indications are that the water vapor measurement 

performance has been improved over its previous nominal configuration. 

The primary goal of AWEX was to inter-compare water vapor technologies and not to provide a 

statistically meaningful set of validation measurements during Aqua overpasses. Nonetheless, the 

operational plan of AWEX was to operate in coordination with nighttime Aqua overpasses as much 

as possible. A heightened period of solar activity caused a shutdown of the AIRS sensors between 

October 29 and November 2, however. It was not until November 19 that AIRS re-calibrated 

and declared operational. Therefore, there was only one useful Aqua overpass during the AWEX 

experiment. 
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In the following sections, the Scanning Raman Lidar and the AWEX-C reference instrument, the 

CFH, are briefly described. Then there is a comparison of GPS and MWR total precipitable water 

measurements. The corrections for both Raman lidar and Vaisala radiosonde that were derived 

from the AWEX-G field campaign are then summarized followed by comparisons of corrected 

lidar profiles with fully-corrected Vaisala RS90/92 radiosondes. Mean percentage differences in 

upper tropospheric water vapor measurements are studied for Vaisala radiosondes, SnowWhite and 

SFU using three techniques for comparison. The results of the AFWEX and AWEX experiments 

are compared and, finally, the effects of the AWEX-G Raman lidar and radiosonde corrections on 

Aqua validation studies are detailed through both radiance and retrieval comparisons. 

4.1 The NASNGSFC Scanning Raman Lidar (SRL) 

The SRZ, is a mobile Raman lidar system designed to measure water vapor, aerosols, clouds and 

other quantities. It was first deployed in the field in 1991 for the Spectral Radiance Experiment 

(SPECTRE) [2] in Coffeyville, KS sponsored by DOE and NASA. It has received numerous up- 

grades since that time and now consists of a Nd:YAG laser operating at the tripled frequency of 

354.7 nm, a 0.76 m horizontally mounted telescope that is co-aligned with a single axis scanner 

that permits horizon to horizon measurements. The 0.76 m telescope is used for the high alti- 

tude measurements, while a second, co-aligned 0.25 m telescope mounted inside of the 0.76 m 

telescope measures aerosol depolarization and the low altitude Raman signals. Measurements of 

water vapor and other quantities are performed during the day and night using the narrow field 
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of view, narrow spectral band technique [20]. The SRL was in essentially the same experimental 

configuration as during the International H20 Project - 2002 (IHOP) that occurred in May - June, 

2002. Many more details of the instrumental configuration of the SRL and the analysis techniques 

used to process the data can therefore be found in references for the IHOP field experiment [20] 

WI. 
4.2 The AWEX-G water vapor reference: CFH 

The CFH is an improved version of the N O M  cryogenic frostpoint hygrometer [ 141, which has 

long been a standard for balloon-borne stratospheric water vapor measurement. Its operation is 

based on the chilled-mirror principle, where a small mirror is electrically heated or cryogenically 

cooled to maintain a constant thin layer of frost that is optically detected, in which case the frost 

layer is in equilibrium with the environment and the mirror temperature is equal to the frostpoint 

temperature of the air. The mirror temperature is measured by a tiny thermistor embedded in the 

surface of the mirror. During AWEX-G, it was always launched with Vaisala RS80-H and Meteo- 

labor SnowWhite packages attached. Most of the launches included a Vaisala RS92 sensor as well. 

An analysis of the measurement errors of the CFH [5] indicates that the mean percentage uncer- 

tainty in the CFH RH measurements over the AWEX-G temperature range is approximately 4% 

when RS92 temperature measurements were used to convert the frostpoint measurements to RH 

and approximately 6% when RS80-H temperature measurements were used. This reduction in ab- 

solute error when using the RS92 temperatures is due to the smaller mean temperature uncertainty 
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in the RS92 radiosonde versus the RS80-H (-0.2 vs -0.5 K): 

4.3 SuomiNet GPS PW comparison with ARM MWR 

The technique that has been adopted for calibrating both Vaisala radiosonde [ 1 13 and Raman lidar 

[lo] within the U. S. DOE ARM program is to constrain the vertical profile of water vapor mea- 

sured by lidar to possess the same total precipitable water as that measured by collocated MWR. 

Research done within the DOE ARM program indicates that carefully calibrated and analyzed 

microwave radiometer data possess an accuracy of approximately 2-3% or 0.4 mm, whichever is 

larger. Therefore, under dry conditions the absolute accuracy of the MWR PW measurement can 

rise above the 2-3% figure stated but for measurements with PW exceeding approximately 13 mm 

the accuracy specification should hold. The high accuracy of the MWR under most atmospheric 

conditions encountered at a location like the A N I  SGP site makes it an excellent calibration stan- 

dard for atmospheric research. 

A SuomiNet GPS system measuring total precipitable water was used in a similar fashion for 

total column water calibration of the SRL during the fall 2002 validation measurements shown in 

figure 1. One of the AWEX-G research objectives, therefore, was to compare the measurements of 

the GPS system with that of the ARM MWR and investigate if biases in the GPS measurements 

might help to explain the differences observed in figure 1 between SARTA calculations based on 

SRL, water vapor profiles and AIRS observations. The GPS measures over a much larger vol- 

ume than the MWR so that individual comparisons can show considerable disagreement under 

16 



conditions of atmospheric inhomogeneity. Line of site comparisons of the two instruments have 

been performed to address these differences in measurement techniques and have shown excellent 

agreement [ 11. During AWEX-G, an approximately month-long comparison of 30-minute average 

GPS and MWR vertical precipitable water measurements was performed in order to minimize the 

effects of short term spatial inhomogeneities. The results of that comparison are shown in figure 2. 

The plot on the left of the figure shows that the PW from GPS was on average 2.4% higher than 

MWR due to an offset of -0.4 mm in the best fit regression. However, the slope of the regression 

between GPS and MWR was essentially unity. This overall agreement of the two sensors is within 

the uncertainty of the MWR, supporting the use of the 'GPS system as an independent source for 

calibration. This comparison was done after reducing the MWR PW by 3% to account for recent 

updates in the ARM MWR PW processing [12]. The plot on the right of figure 2 presents the 

comparison of MWR and GPS PW throughout the 24-hr period. The moist bias of the GPS with 

respect to MWR can be seen throughout the diurnal period. The moist bias is approximately 1% 

larger during daytime than nighttime. 

This analysis indicates that the GPS calibration agrees well with the ARM MWR and offers sim- 

ilar absolute accuracy as a source for Raman water vapor lidar calibration provided sufficient statis- 

tics are accumulated to reduce the effects of spatial inhomogeneities in the atmosphere. Therefore, 

the disagreements observed in figure 1 between the calculations based on the Raman lidar water 

vapor profile and AIRS observations are unlikely to be due to the use of GPS as the water vapor 
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calibration reference. The corrections to Raman lidar measurements that were derived from the 

AWEX-G experiment and that do offer an explanation for most of this disagreement will now be 

discussed along with the AWEX-derived corrections to Vaisala radiosonde data. 

4.4 Corrections to Raman Lidar and Radiosondes derived from AWEX-G 

One of the achievements of the AWEX-G effort was to develop new correction techniques for 

Raman Lidar and Vaisala RS80-H and RS90/92 radiosondes. The Raman lidar corrections in- 

clude accounting for the temperature dependence of Raman scattering from water vapor and have 

been discussed in detail recently in the context of the International H2O Project (IHOP) [20] [21]. 

Therefore the details of the correction technique will only be summarized here. The corrections 

developed for the Vaisala RS80-H and RS90/92 radiosonde are based on comparisons of Vaisala 

radiosondes and the CFH when launched on the same ba!!oon. The details of the those corrections 

are described in a companion paper [ 51 in this volume and will be described briefly. 

4.4.1 Corrections for Raman lidar water vapor measurements 

Two significant corrections for SRL water vapor measurements were developed and tested during 

the AWEX-G field campaign. Lidar measurements at short range are usually influenced by what 

is known as the "overlap function". The overlap function accounts for the fact that for ranges 

close to the lidar system, there is a non-linear relationship between the received power in a Raman 

lidar and the number density of the scatterers being probed. This non-linearity is due to both 

geometrical and optical effects and is difficult to compute from first principles with high accuracy. 
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Therefore, an empirical correction for residual effects of the lidar overlap function was made based 

on comparisons of water vapor mixing ratio measured by SRL and Vaisala RS90 radiosondes. This 

technique has been previously described [20] and is similar to what has been applied to the CARL 

lidar system [3]. It resulted in a single, mean overlap correction vector that was applied to all 

SRL water vapor measurements during AWEX. The net result of this overlap correction for the 

AWEX-G experiment was to reduce the SRL calibration factor by approximately 5%. 

In addition, a correction for the temperature dependence of the Raman lidar measurement of 

water vapor mixing ratio was also performed. This temperature dependence is primarily due to 

the temperature dependence of Raman scattering by water vapor, which changes significantly as 

a function of temperature [18]. The use of narrow spectral band detection for Raman water va- 

por measurements, as is done in the SRL, significantly improves the signal-to-noise of upper tro- 

pospheric water vapor measurements and thereby improving the accuracy of measurements of the 

type required for Aqua validation. However, due to the spectral width of the Raman water vapor 

spectrum and its temperature dependence, it is possible that the effective cross section of water 

vapor can change significantly over the range of temperatures present in the troposphere. The 

temperature correction technique is based on a new form of the lidar equation [18] and its use in 

the calculation of water vapor mixing ratio [19]. This equation involves the ratio of two factors, 

F N ( T )  and F H ( T ) ,  that account for the temperature dependence of Raman Nz ( N )  and HZO ( H )  

scattering. The entire temperature dependence of the water vapor mixing ratio measurement by 
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Raman lidar is contained in the ratio FN ( T ) / F H  (7') , examples of which have recently been pub- 

lished [20]. All of the SRL measurements made during AWEX-G were acquired during the times 

of radiosonde launches permitting this ratio to be calculated for each of the SRL measurement pe- 

riods during AWEX-G. In the mean, the effect of the temperature correction during AWEX-G was 

to reduce the magnitude of the upper tropospheric water vapor mixing ratio measurements with 

respect to those in the lower troposphere. This effect reaches a maximum of approximately 8% at 

14 km. The standard deviation of the temperature correction at any altitude was less than 1 % with 

the largest standard deviation existing in the boundary layer. It should be pointed out that for the 

configuration of the SRL, F N ( T )  /FH ( T )  can be made nearly temperature independent by use of a 

water vapor center wavelength of 407.45 nm [20]. Since the time of the AWEX-G measurements, 

the SRL water vapor filter has been tilt-tuned to this shorter wavelength so that future SRL water 

vapor measurement should be nearly temperature independent. 

4.4.2 Corrections for Vaisala radiosondes 

During AWEX-G, most of the balloons launched carried multiple sonde packages permitting si- 

multaneous measurements to be acquired by Vaisala RS80-H, RS-92 and the reference CFH sensor 

while travelling through the same atmosphere. This dataset was analyzed by Miloshevich et. al. 

[5] by first applying previously known time lag and, in the case of the RS80-H, temperature de- 

pendence corrections for Vaisala radiosondes [4] in order to characterize residual mean differences 

in the measurements of the Vaisala RS80-H and RS92 with respect to the CFH reference sensor. 
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These differences were characterized as a function of relative humidity (RH) and temperature, in 

terms of which the Vaisala calibration functions are defined, in order to derive what is referred to 

as the "AWEX empirical calibration correction". The AWEX corrections are therefore applied to 

Vaisala RS80-H and RS92 as a function of relative humidity and temperature and minimize the 

mean differences between the Vaisala radiosonde measurements and those of the CFH. After ap- 

plying these corrections, the mean comparison of both RS80-H and RS92 and CFH agree within 

&lo% (at worst and usually much better) up to the tropopause and in the case of the RS92, into 

the lower stratosphere making both radiosonde sensors suitable for Aqua validation work if the 

corrections are applied. Other tests performed during AWEX-G indicated that the Vaisala RS90 

and RS92 are virtually identical in their water vapor measurement performance permitting the cor- 

rection function derived based on simultaneous measurements of RS92 and CFH to be applied to 

RS90 measurements as well. See Miloshevich et. al. [5] for more details. 

4.5 Water vapor profile comparisons 

Water vapor measurements acquired by SRL and six radiosonde sensors (Vaisala RS80-H, Vaisala 

RS90, Vaisala RS92, Sippican Inc. Mark 11-a, Modem GL-98 and Snow White chilled mirror 

hygrometer) were compared with the reference CFH profiles. The profile comparisons of the 

different radiosondes with CFH are fully described in a companion paper [ 5 ] ,  so the assessment 

of lidar profile accuracy will be focussed upon in this section. The results of that study that are 

pertinent to the analysis done here are: 
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1. AWEX testing indicated that the Vaisala RS90 and 92 sensors have essentially identical water 

vapor measurement performance due to the use of nearly identical capacitance RH sensors 

in the two instruments. Because of this, these sensors will be referred to as RS9X in this 

analysis. 

2. Overall, the most accurate operational radiosonde tested was the Vaisala RS9X, whose mean 

percentage accuracy relative to CFH, after all corrections, was < 1 % in the lower troposphere 

(LT), <2% in the mid-troposphere (MT) and <3% in the upper troposphere (UT). It was 

judged that only the Vaisala RS9X is sufficiently accurate in the mean for Aqua water va- 

por validation throughout the troposphere (given the 10% absolute accuracy goal for Aqua 

retrievals), especially if the corrections are applied. 

3. The SnowWhite is incapable of measuring very dry coiidiiions (<6% RH), and substzgtial er- 

rors in the lower troposphere are possible if the proper phase of condensate on the mirror can- 

not be determined. After eliminating measurements subject to these errors, the SnowWhite 

that flew on the same balloon as the CFH showed excellent mean agreement with the CFH 

and therefore the SnowWhite is a suitable Aqua validation sensor under this limited set of 

conditions. 

4.5.1 Data selection 

In the comparison of Scanni .born g Raman Lidar profiles with the balloo sensors during the 

AWEX field campaign, certain data rejection criteria were used. Many of the AWEX measurement 
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periods had at least some periods of cloudiness. In general, in comparisons of lidar and radiosonde, 

if the lidar senses a cloud at a certain altitude there is no guarantee that the radiosonde, which has 

drifted downwind, is also sensing a cloud at the same altitude. Therefore a cloud-mask product 

was created from the SRL aerosol scattering ratio data and used to screen out cloudy comparisons 

during AWEX. Comparisons between SRL and sonde were not performed for altitudes at which 

the SRL aerosol scattering ratio indicated the presence of a cloud. Furthermore, if the random 

error in the SRL water vapor mixing exceeded loo%, these SRL data were rejected. Certain points 

were rejected from the SnowWhite and CFH data records because of icing or controller instability 

and from the RS9X due to anomalously large disagreements with SRL that indicated different air- 

masses were likely being sampled. SnowWhite data below 6% RH were rejected from the analysis 

due to the inability of the Peltier cooler to consistently maintain a. frost layer in very dry conditions, 

as previously mentioned. 

4.5.2 SRL profile comparisons with fully-corrected Vaisala RS9X 

The profile comparison of SRL with the reference CFH showed agreement generally within 10% up 

to an altitude of 9 km, but poor statistics above this altitude due to the presence of clouds prevented 

a robust characterization of SRL performance above this altitude. However, one of the conclusions 

of the AWEX-G radiosonde analysis [5] was that the mean, fully-corrected RS9X agreed with the 

CFH to better than 3% at all altitudes. The fully-corrected RS9X sensor, therefore, can be used as 

a transfer standard of the CFH calibration to assess the accuracy of the SRL measurements since 
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there were significantly more comparisons of S I U  and RS9X than with CFH. 

The mean percentage difference between the SRL and RS9X using three methods of analyzing 

the SRL data are therefore shown in figure 3 using the data rejection criteria described earlier. The 

three methods of analyzing the SRL data, referred to as "Sum","Var", and "Track", are described 

more filly in Appendix 11. Briefly, the "Sum" method uses the same temporal averaging period 

independent of altitude, "Var" uses a variable temporal average as a function of altitude and "Track" 

implements a techtuque that attempts to compensate for the fact that the radiosonde drifts with the 

wind. For this comparison, the definition of the layer mean percentage difference is Mean[(S,  - 

l4)/l4] where S indicates the SRL measurement and V indicates the Vaisala RS9X measurement 

and where each ith layer is 1 -km thick. Table 1 provides the mean comparison of the sensors based 

on a regression analysis where the percentage difference between SRL and RS9X is calculated 

based on order pairs formed at l-km resolution, the same as used in the profile analysis shown in 

figure 3. 

Referring to figure 3, the three methods of analyzing the SRL data with respect to RS9X show 

agreement to better than 10% at all altitudes below 13 km. Below 6 km,  all methods agree to better 

than 5-7% with the RS9X measurements. In this altitude range, the track sonde technique yields 

a near 0% bias and the variable and straight sum techniques show the largest differences of 5 7 %  

between 3 and 4 km. Above 6 km, the variability in the track sonde comparisons increases so 

that the track sonde analysis in general yields the largest differences with RS9X. The straight sum 
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and variable sum comparisons perform similarly throughout the profiles. The regression analysis 

shows nearly unity slope for all three methods of reducing the lidar data and mean percentage 

difference of less than 3% for all techniques. However, this traditional technique of comparing 

lidar and radiosonde data averages dry and wet profiles within the same altitude region together in 

the ensemble. This may have the effect of masking errors that increase under dry conditions. In 

section 4.7, a technique that permits these effects to be isolated in the analysis will be explored. 

4.6 Mean AWEX-G Upper Tropospheric Accuracy Assessment 

Because of the importance of upper tropospheric (UT) water vapor for Aqua validation and the 

difficulty in accurately measuring it, the UT measurement accuracy of the Vaisala RS80-H, RS9X, 

SnowWhite and SRL were studied. Only those radiosonde measurements made on the same bal- 

ioon were used in the accuracy assessment with rcspect to CFH. The SRL accuracy was assessed 

with respect to fully corrected RS9X due to the larger number of comparisons available. 

The accuracy assessment was performed in three different ways: the first was based on the 

total precipitable water measured by the various sensors from 7 km to the tropopause (typically 

between 14 - 15 km during AWEX). This technique gives greater weight to the lower altitudes 

where most of the precipitable water is located. The second was based on a linear regression 

of ordered pairs of values from the two sensors being tested and uses a similar approach as in 

the AFWEX analysis [3], where the mean percentage differences were determined using the for- 

mula X ,  - REF,/REF,, where REF, refers to the mean of the reference sensor measurements 
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in the entire 7 km to tropopause layer. This technique for calculating mean percentage differ- 

ence tends to suppress the influence of dry layers. The third technique was based on the same 

linear regression results but used a different formula for calculating mean percentage difference: 

(Xi - REFi)/REFi, so that in this method the percentage difference is determined strictly layer 

by layer. This technique equally weights dry and wet layers in the computation of the mean. For 

these regressions of same-balloon radiosonde data, ordered pairs of points were formed using ap- 

proximately 20 m vertical resolution where all qualifying points within the altitude range of 7 

km to the tropopause were used. For the regressions of SRL and RS9X data, both 200 m and 1 

km resolution data were studied. The regressions presented here use 1-km resolution; the 200 m 

resolution regressions gave similar results but with higher variability. 

4.6.1 Comparisons with respect to CFH 

Because of the potential influence of atmospheric variability on the assessment of relative perfor- 

mance of sensors that are not sampling the same atmosphere, only sensors carried on the same 

balloon as the CFH are analyzed here. The mean percentage differences of the Vaisala RS80-H, 

Vaisala RS92 and Meteolabor SnowWhite water vapor mixing ratio measurements with respect to 

CFH are shown in figure 4. Water vapor mixing ratio was calculated using the respective tem- 

perature and pressure information from each individual sensor. For the CFH, which was always 

launched with an RS80-H attached and usually also with an RS92, the RS92 temperature and pres- 

sure were used when available due to there higher accuracy. For the SnowWhite, the RS80-H 
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temperatures were used since these are the temperatures that are available in its nominal con- 

figuration when launched with the CFH. Ordered points were formed at a vertical resolution of 

approximately every 20 m. The Vaisala radiosondes have received the full corrections described 

above including MWR scaling. The SnowWhite profiles have only been microwave-scaled. The 

results are summarized in Table 2. 

Figure 4 and Table 2 indicate that the various methods of analysis show approximately a 1-2% 

dry bias of RS92, a 3-6% dry bias of RS80-H and a 2-8% wet bias of SnowWhite with respect to 

CFH. Nearly all of these comparisons, however, are within one standard error of the reference CFH 

value. Only the comparison of RS80-H and CFH based on precipitable water shows a statistically 

significant, small dry bias. As would be expected, the variability in the three mean percentage 

differences (E( %)) presented (PW, AFWEX, AWEX) increases consistently from left to right. 

The PW method of calculating percentage difference generates one value for each profile, thus 

increasing the statistical robustness. The AFWEX method calculates a mean percentage difference 

but uses the same mean value from 7km to the tropopause to normalize each of the differences used 

in the mean whde the AWEX method normalizes each of these differences by the CFH value used 

in each difference. Thus from left to right the results shown in Table 2 of the different methods of 

calculating percentage difference are increasingly more subject to the influence of small absolute 

differences (and corresponding large percentage differences) in dry layers. 
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4.6.2 Comparisons of SRL with respect to fully-corrected RS90/92 

In Miloshevich et. al., [ 5 ] ,  it was shown that, in the mean, the fblly-corrected RS9X could be used 

as a transfer of the CFH absolute calibration with mean uncertainties less than 3% in the upper 

troposphere. Because of the much larger number of comparisons of SRL and RS9X than with 

CFH, therefore, the analysis of SRL upper tropospheric measurements was done with respect to 

RS9X. For the regression analyses shown here, the ordered pairs were formed using 1 -km averages 

to decrease the influence of small differences in dry layers that can result in large percentage dif- 

ferences. The results of the PW and bias comparisons are presented in figure 5. The corresponding 

tabular information is provided in Table 2. 

Figure 5 presents the upper tropospheric precipitable water comparison of the fully corrected 

SRL and RS9X data using the three methods of analyzing the SRL measurements. Aii methods 

of analysis show agreement to better than &5.4% with the standard error indicating no significant 

difference between the mean UT measurements of the SRL and RS9X. There is, however, a dis- 

tinct tendency for the tracksonde method to produce higher variability than the other methods of 

reducing the SRL, data. It is interesting to note that the slope of the best fit line using all three 

methods of processing the SRL, data is less than unity, whereas the full profile regression results 

shown in Table 1 indicated a nearly unity slope. The upper tropospheric regression will be studied 

in more detail in the next section. 

Of the three techniques, the variable sum technique yields a slope that is closest to unity, the 
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intercept that is closest to zero shows the lowest mean variability, and also provides the best overall 

agreement with the fully corrected RS9X. It is for these reasons that the variable sum technique of 

analyzing the SRL data will be used to demonstrate the effect of the corrections to the lidar data 

later in the paper. 

4.7 Lidar and radiosonde water vapor measurements compared as a function 
of water vapor amount and altitude 

As previously described, the AWEX corrections to Vaisala radiosonde data were developed as 

functions of RH and T since these are the fundamental variables that both influence radiosonde 

accuracy and that Vaisala uses in its own calibration functions that are applied automatically to the 

datastream by the ground station. In a similar fashion, it is interesting to consider what are the fun- 

damental variables influencing the random uncertainty of Raman lidar water vapor measurements 

where the random error is determined assuming Poisson statistics. In simple terms, assuming sim- 

ilar background light levels, as should be the case for these nighttime profiles, the random error in 

Raman lidar measurements of water vapor are influenced by 1) the amount of water vapor present 

at a given altitude and 2) the altitude of the comparison. However, a mean comparison of lidar 

and radiosonde as a function of altitude, as shown in figure 3, results in averaging wet and dry 

layers in the same altitude range but from different profiles. This can have the effect of combining 

measurements in the same layer that may be characterized by very different random uncertainties. 

In order to address this, figure 6 shows a comparison of SRL and RS9X as a function both of water 
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vapor mixing ratio and altitude. The variable sum technique was used to process the SRL data used 

here. 

In figure 6, the percentage differences between fully-corrected SRL and fully-corrected RS9X 

between the altitudes of 7-9 km, 9-1 1 km and 1 1 - 13 km are presented. After using the data selec- 

tion techniques described earlier, the ordered pairs of points were divided into 5 equally populated 

categories based on the RS9X water vapor mixing ratio values. The percentage difference is then 

plotted for the mean of each of these 5 categories within each of three altitude regions. Although 

this comparison is based on only 13 sonde profiles, there is an indication that the SRL measure- 

ments become moister than the radiosonde as mixing ratio amount decreases. This tendency ap- 

pears to exist independent of altitude and is in agreement with the 7 km to tropopause regression 

slopes shown in Table 2, which were all less than unity. A further study of these same percentage 

differences versus both RH and T (not shown) indicated that there is no temperature sensitivity 

to the differences, but that a moistening trend of similar magnitude in the SRL is observed when 

viewed in terms of RH. The lack of a temperature dependence in these results implies that the cor- 

rection for the temperature dependence of Raman scattering is not the source of the disagreement. 

The percentage differences between SRL and RS9X are present in approximately equal magnitude 

whether studied in terms of mixing ratio or RH (to be expected given the general relationship of 

these two quantities), Therefore, the 20-40% mean differences observed in figure 6 for the very 

driest layer studied is larger than the uncertainty in the correction of the RS9X with respect to the 
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CFH under dry conditions. The implication is that there is a true tendency for the SRL to measure 

moist under very dry conditions. Fluorescence of some organic contaminant or optical component 

in the lidar system is a possible explanation for a moist bias that would not show a temperature 

dependence since fluorescence would have a long decay time and tend to elevate the signal above 

the background and be most visible in dry layers. We will study this effect in the future although 

it is important to point out that even with this moist bias, the SRI, and RS9X agreed generally to 

better than 5% in their upper tropospheric water vapor measurements. 

5 The relationship of AWEX-G and AFWEX results 

Both AWEX-G and AFWEX resulted in a core group of sensors that agree within 4~5% based 

on several analysis methods. The AFWEX field campaign used the LASE airborne DIAL instru- 

ment as its reference and AWEX-G used the CFH. These two instruments have not been directly 

compared but an analysis of the results of the two field campaigns can give some indication of the 

relative performance of the LASE and CFH and thus of the conclusions of AWEX-G and AFWEX. 

There were two water vapor profilers common to the two field campaigns that operated nominally 

and for which there are sufficient statistics to make useful conclusions about their operations. 

Those sensors were the SRL and the Vaisala RS80-H. 

As detailed in Miloshevich et. al. [ 5 ] ,  the RSSO-H calibration accuracy is a function of RH and, 

prior to application of the AWEX correction, shows a moist bias under dry conditions and a dry bias 
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under moist conditions. The results of both AFWEX and AWEX are in agreement with the RH- 

dependent accuracy curves [ 5 ]  derived for the RS80-H. Apparent differences in the performance 

of the RS80-H sensor prior to applying corrections in the two experiments are attributed to the 

generally moister profiles that occurred in AFWEX versus AWEX. Therefore, after considering the 

differences in the measurement conditions found in AFWEX and AWEX, the RS80-H performance 

was similar in the two experiments. 

Considering the SRL results, the mean UT bias of the SRZ, with respect to LASE in AFWEX 

(based on a regression of points between 7 km and the tropopause using what we have referred 

to as the AFWEX technique here) was approximately +4% [3]. We have re-analyzed the SRL 

measurements from AFWEX using the correction techniques developed here and found that the 

mean upper tropospheric bias of the SRL decreased by 3% using the same methods employed 

in the AFWEX analysis. This brings the mean calibrations of LASE and SRL to within 1% of 

each other during AFWEX. Table 2 shows that using the variable sum technique, the SRL agreed 

within 1-4% of the fblly-corrected RS9X, which agreed with CFH to better than 3%. Therefore, the 

implication of these relative comparisons is that the AFWEX water vapor reference sensor (LASE) 

and the AWEX water vapor reference sensor (CFH, which in Miloshevich et. al. was judged to 

have absolute accuracy of 4-6% depending on RH) are equivalent to within approximately 5%. 

6 The effect of the Raman lidar and radiosonde correc- 
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tions derived from AWEX on AIRS radiance comparisons 

Analytical correction techniques were derived during AWEX to improve the absolute accuracy of 

both radiosonde and Raman lidar measurements and have been described above. In this section, 

the inhence of those corrections on AIRS radiance comparisons is illustrated. 

6.1 Raman lidar overlap and temperature dependence corrections 

The radiance comparison shown in figure 1 has been re-analyzed using the Raman lidar correc- 

tion techniques described here and also using version 4 of SARTA. Figure 7 shows the Obs-Calc 

comparison of AIRS observations and SARTA calculations based on 1) the SRL data as released 

in early 2003 without the corrections described here (dashed) and, 2) the SRL water vapor mea- 

surements after applying the corrections developed and verified in the AWEX-G field experiment 

(solid). Even using version 4 of SARTA, the original SRL data show a significant positive bias 

with respect to the A I R S  observations. The calculation based on the revised SRL data, however, 

agrees in the mean to within f0.5K with the A I R S  observations throughout the water band. It 

is worth pointing out that the total precipitable water standard used for the calibration of the SRL 

measurements during t h s  fall 2002 field campaign did not change fiom the original and corrected 

data shown in figure 7. Therefore the total precipitable water is the same for both versions of the 

SRL profiles. The large differences shown in the figure 7 can all be attributed to differences in how 

the precipitable water is distributed in the SRL profile used in the SARTA calculation. 
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6.2 Vaisala RS-90 Corrections 

At the current time, the channel transmittances in the AIRS fast forward model, SARTA, have 

been tuned to minimize the differences between observations and fast model calculations using the 

best estimate atmospheric product based on the first phase of RS90 launches that occurred at the 

Tropical Western Pacific (TWP) ARM site [8]. This analysis was done prior to the availability of 

the AWEX corrections. Figure 8 presents a comparison of 68 AIRS FOVs with calculations using 

the January 2004 version of SARTA for an ensemble 13 semi-clear overpasses of TWP from the 

second phase of the special Aqua launches that occurred between September 2003 and March 2004. 

The dashed curve presents Obs-Calc using the microwave scaled Vaisala RS90 radiosondes without 

any other corrections as input to SARTA. The solid curve is the Obs-Calc for the same RS90 

radiosondes but after applying the time lag correction [4], the AWEX correction and microwave 

scaling. In the range of 1400 - 1500 cm-l, the difference between the two curves is generally 

0.4-0.5KY with the AWEX correction being responsible for most of this effect. Using the rule 

of thumb that 1K corresponds to a relative change of 12% in the amount of water vapor in the 

upper troposphere [6], the net effect of the corrections on this ensemble of radiosondes equates to 

approximately a 5 6 %  increase in UT water vapor mixing ratio. Although the absolute uncertainty 

of the corrected RS90 data is not better than 5%, the implication of the comparison shown in 

figure 8 is that there could be a dry bias in the spectroscopy of SARTA in the upper troposphere of 

approximately 5%. This could reflect the fact that SARTA was tuned with respect to radiosonde 
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data prior to applying the corrections developed here. Although the comparison with respect to the 

lidar profiles shown in figure 7 shows slightly better overall agreement with the AIRS observations 

than figure 8 based on RS90 radiosondes from TWP, both comparisons tend to indicate a dry bias 

to SARTA spectroscopy of approximately 5% in absolute water amount in the high wavenumber 

region of the water band. Although the absolute accuracy of the CFH sensor used to generate the 

AWEX calibration correction for the RS90 is also approximately 5%, the implication of both of 

these comparisons based on independently calibrated validation data is that there is a small dry 

bias in the SARTA spectroscopy. 

It is important to point out that figure 8 represents the mean comparison of an ensemble of mea- 

surements. This is quite useful for radiance validation experiments where large sets of statistics are 

desired. However, the magnitude of the corrections for individual radiosondes can be considerably 

larger than the -5-6% noted above. Loolung at the individual radiosondes that were launched at 

TWP during phase 2 of the special Aqua radiosonde launches, for example, the changes in upper 

tropospheric water vapor values due to the corrections developed from AWEX exceed 40% in some 

cases [5] .  Therefore, if studies are to be done on single overpass cases or with small datasets it is 

particularly important to work with fully corrected radiosonde data. 

7 Comparison of GPS and corrected SRL measurements from fall 
2002 to Aqua version 4 retrievals 

Using corrected SRL data, the 26 overpass measurements acquired at GSFC in the fall of 2002 
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were divided into clear and high cloud cases and compared with the latest version 4 Aqua retrievals 

after degrading the validation measurements to the vertical resolution of the retrievals. Only those 

Aqua retrievals for which all quality assurance (QA) flags were zero were used. The comparison 

is shown in figure 9. Although the number of cases is not large, the profile comparisons show a 

distinct moist bias to the retrievals in the lower and mid troposphere reaching mean values of 20- 

30%. There is also some indication that the presence of cirrus clouds bias the retrievals drier both 

in the lower and upper troposphere. The comparison of precipitable water from SuomiNet GPS 

(that was used to calibrate the Raman lidar profiles used in the comparison on the left) and Aqua 

retrieval is shown on the right. It indicates a similar moist bias to the retrievals of approximately 

20%. Larger ensembles of comparisons will be made from the GSFC site to study this apparent 

moist bias in the future. 

8 Summary and Conclusions 

The early AIRS comparisons using Aqua validation data demonstrated a large uncertainty in the 

water vapor measurements that were being acquired under the Aqua validation activity. Discrepan- 

cies between ALRS observations and SARTA calculations using Scanning Raman lidar and Vaisala 

RS90 radiosonde data indicated an apparent uncertainty in upper tropospheric water vapor calibra- 

tions of at least 25%. Other validation data showed even larger discrepancies. This was a motivator 

for the AIRS Water Vapor Experiment - Ground (AWEX-G) that took place between October 27 
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and November, 19, 2003. The objective of AWEX-G was to bring together in one place various 

water vapor technologies in use for Aqua validation and operate them over an extended period in 

order to resolve the discrepancies observed. 

During AWEX-G various radiosonde (Vaisala RS80-H, RS90, RS-92, Modem, Sippican, SnowWhite) 

and Raman lidars (SRL and CARL,) were operated along with the reference Cryogenic Frostpoint 

Hygrometer (CFH). The total precipitable water measurements of GPS were also studied with re- 

spect to MWR. The month long comparison of GPS and MWR precipitable water measurements 

during AWEX indicated mean agreement of better than 3%. The conclusion was that GPS is an 

accurate precipitable water calibration source that can be used to constrain profile measurements 

of water vapor mixing ratio by Raman lidar, provided that ensembles of cases are used to reduce 

variability that can be introduced by the large volume average used by GPS. 

Corrections for the effects of the lidar overlap function and the temperature dependence of Ra- 

man scattering on Raman water vapor measurements were also developed using the AWEX-G 

measurements. The combined effects of the overlap and temperature dependence corrections on 

the SRL water vapor measurements was to reduce the water vapor mixing ratio in the upper tro- 

posphere by 10-15% at the highest altitudes. The temperature dependence correction is a sensitive 

function of the exact transmission characteristics of the lidar system. In the case of the SRL, the 

temperature dependence of the water vapor mixing ratio measurements can be essentially elimi- 

nated with careful selection of the bandpass characteristics of the water vapor interference filter. 
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Atmospheric variability was found to be potentially a significant source of error in this study. 

For this reason radiosonde comparisons with CFH were limited to sensors flown on the same 

balloon as the CFH. Comparisons of sensors with CFH launched simultaneously but on differ- 

ent balloons consistently showed significantly higher variability. The contribution of atmospheric 

variability to the comparison of lidar and radiosonde was noticeable and required some manual 

rejection of data. Based on our experience in AWEX-G, it is suggested that, if possible, accuracy 

assessments of radiosondes be done with respect to sensors on the same balloon and that accuracy 

assessments of lidar be done with respect to other lidar systems so as to minimize the effects of 

sampling different atmospheres on the results. In order to avoid the need for manual rejection 

of data, much larger ensembles of lidarhadiosonde comparisons than acquired in AWEX-G are 

cncouraged in future experiments. 

The AWEX-G radiosonde intercomparison activity is detailed in a companion paper [5] in this 

same issue. Among the conclusions of that effort were that the Vaisala RS90 and 92 have es- 

sentially identical measurement performance and thus could be treated as identical sensors. A 

significant result of that detailed accuracy assessment effort was the development of new empiri- 

cal corrections for Vaisala RS80-H and RS9X that address errors in the Vaisala calibration model 

and bring these Vaisala sensors into excellent mean agreement with the CFH. For RH > lo%, the 

RS80-H agrees in the mean 

< lo%, the mean agreement 

with CFH to within &5% and the RS-9X to withn f2%. For RH 

between RS80-H and CFH is within &lo%, while that for RS-9X is 
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withm &5%. It was judged that only the Vaisala RS9X is sufficiently accurate for Aqua water vapor 

validation throughout the troposphere (given the 10% absolute accuracy goal for Aqua retrievals), 

especially if the corrections are applied. 

Using the newly developed correction techniques for both radiosonde and Raman lidar, the 

mean upper tropospheric water vapor calibrations of the Vaisala RS-SOH, Vaisala RS92 and Mete- 

olabor SnowWhite were calculated using three techniques versus the reference CFH. Full profile 

and upper tropospheric comparisons were also made between the SRL and fully-corrected RS9X. 

For the purposes of this study, the upper troposphere was defined as extending from 7 lun to the 

tropopause; the same as in the AFWEX study [3]. Three techniques were used to compare upper 

tropospheric water vapor measurement performance. The first of these was in terms of integrated 

precipitable water hetween 7 km and the tropopase, the second and third were both in terms of 

biases determined fiom the linear regression of ordered pairs of points within the same altitude 

range, where two different formulas were used to calculate the biases. Using data selection crite- 

ria, mean agreement within 5% was generally achieved between the operational radiosondes and 

the CFH using any of the methods of comparison. 

Of the three methods of characterizing sensor UT accuracy, the one based on precipitable water 

may be more important for assessing the influence of measurement error on outgoing longwave 

radiation (OLR) calculations since it has been shown [3] that errors of 5% in the integrated PW 

above 7 km introduce errors in OLR calculations of -0.5 W/m2. It should be pointed out, however, 
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that the PW above 7 Icm is typically dominated by the water vapor found within a region 1-2 Icm 

above this altitude. So this technique of comparing sensors will be less sensitive to measurement 

differences at high altitudes where water vapor concentrations generally are lower. The regression 

analyses can therefore provide more information about the relative performance of sensors in the 

upper portions of the upper troposphere than can the PW approach. Only if regression results reflect 

relative performance of sensors that is independent of altitude may they be taken as a substitute 

for an accuracy assessment done directly in terms of precipitable water. Accuracy assessments 

based both on total precipitable and regression biases provide a more complete characterization of 

a sensors' relative Performance than either approach separately. 

Miloshevich et. al. [ 5 ]  showed that the fully corrected RS9X agrees in the mean with CFH to 

generally better than 3% throughout the troposphere (better in the lower and middie tropospnerej. 

Therefore, because of a small number of direct SRL/CFH comparisons in the UT, the RS9X was 

used as an accurate transfer standard of the water vapor calibration of the CFH reference sensor 

in order to characterize the water vapor measurement performance of the SRL. There were three 

techniques of analyzing the Raman lidar data used in order to address the inherent spatiotem- 

poral measurement differences between lidar and radiosonde. These techniques are referred to as 

"Var", "Sum",and "Track".. The 1-km average profile comparison of fully-corrected SRL and fully- 

corrected RS9X showed mean agreement between the two sensors of generally better than 5% up 

to an altitude of 12 km using any of the techniques. The tracksonde showed larger variability than 
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the straight sum and variable sum methods resulting in agreement of better than 10% to the same 

altitude. The conclusion regarding the three methods of analyzing the Raman lidar data is that, 

based on this ensemble of measurements, there is a small advantage to the use of the variable sum 

technique over the straight sum technique, but that the track sonde approach of analyzing the data 

introduced larger variability in the results than either of the other techniques. It is apparent, at least 

for this set of measurements, that the assumption of the track sonde approach - that the atmosphere 

translates uniformly and unchanging at each altitude - was violated such that this technique of 

analyzing the data actually degraded the comparisons. 

Both standard deviation and standard error of the mean percentage differences are presented in 

the results provided here. The use of standard error assumes that the relative difference between 

two sensors being compared is independent of the ordered pairs used in the regression even though 

these pairs may represent very different measurement conditions (RH, T, mixing ratio, altitude) 

that can influence measurement performance. Based on the results here, this assumption is more 

true for the same-balloon radiosonde comparisons than the lidarhadiosonde comparisons. It is not 

clear if the tendency for the upper tropospheric lidadradiosonde regressions to yield slopes less 

than unity reflects a measurement problem in the lidar or the radiosonde or if some element of 

atmospheric variability not removed through data selection might be the cause. Despite the less 

than unity slopes in the UT comparison of SRL and RS9X, mean agreement in the UT comparisons 

was achieved generally at the 5% level using all methods of comparison. 
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Based on this analysis, a core group of sensors was found to agree at approximately the &5% 

level after applying all corrections that were developed from AWEX. These sensors were the 

Vaisala RS80-H, RS90, RS92, SnowWhite, SRL and the CFH. In the case of the RS80-H, cloud 

contamination must be eliminated to achieve this accuracy. In the case of the SnowWhite, cloud 

contamination must be eliminated and the RH comparisons must further be restricted to values 

above 6% RH. The comparison of fully corrected SRL and RS9X indicated agreement generally 

to better than 5% both in the full profile comparisons and in the upper tropospheric water vapor 

comparisons. A study of the common results of AFWEX and AWEX-G experiments implies that 

the reference sensors from AFWEX (LASE) and the CFH reference sensor from AWEX-G should 

agree within approximately 415%. The effect of the corrections was demonstrated both in radiance 

zmd retrieval comparisons using SRL data Erom NASNGSFC and Vaisala RS90 data from the 

ARM TWP site. The radiance comparison indicate agreement with the AIRS fast forard model, 

SARTA, at the 5% level. Comparison of Aqua retrievals and corrected Raman lidar data indicate 

a moist bias to the retrieval of approximately 20% and that the presence of cirrus clouds may 

influence these results. 

The main research goal of the AWEX-G field campaign was to study and resolve apparent 

measurement differences among Vaisala radiosonde and Raman lidars in use in the Aqua validation 

effort. The results presented here indicate that measurement errors of significant magnitude were 

found in both the Vaisala radiosondes and Scanning Raman Lidar and that the correction techniques 
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developed for these instruments bring them into agreement both with each other and with the 

reference sensor, the Cryogenic Frostpoint Hygrometer, to approximately 5%. Given that the goal 

for Aqua retrieval absolute accuracy is lo%, the corrected profiles provided by Vaisala RS80-H, 

RS9X and Scanning Raman Lidar are found to be suitably accurate for Aqua validation efforts. 
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11 Appendix: Efforts to address the spatiotemporal mismatch be- 
tween lidar and radiosonde data 

A fundamental difference in the water vapor measurement techniques of Raman lidar and ra- 

diosonde is that the lidar measures along a straight line and radiosondes drift with the wind. 

Furthermore, mixing ratio measurements by Raman lidar require varying amounts of averaging 

time to provide similar signal to noise characteristics as a function of altitude. For example, under 

nighttime conditions such as those studied during the AWEX field campaign, figure 10 shows a 

typical example of the number of one-minute profiles that must be summed together to achieve no 

more than 10% random error as a function of altitude. By contrast, the radiosonde makes all of 

its measurements nearly instantaneously but requires approximately 30 minutes to ascend to the 

upper troposphere. Due to the fundamental differences in water vapor measurement resolution of 

Raman lidar and radiosonde, three techniques of averaging the Raman lidar data were explored in 

the comparisons with radiosonde data. 

The first technique of averaging the Raman lidar data consisted of using a straight sum of 

a fixed number of profiles independent of altitude. This is the technique that has been used in 

similar intercomparison studies such as AFWEX [3] and is referred to here as "Sum". The second 

technique of averaging used a variable number of profiles in the summation as a function of altitude 

so as to maintain the random error at each altitude below some threshold value, here set to be 10%. 

This technique has been described recently [21] and is referred to as "Var". The third technique 
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attempted to compensate for the fact that the radiosonde drifts with the wind. The height of the 

radiosonde as a function of time was used to shift, as a function of altitude, the timelheight series 

of lidar mixing ratio. This shifting was done so that the data used at a certain altitude was that 

which was measured by the lidar at the time corresponding to when the radiosonde passed through 

that same altitude. This technique of attempting to track the sonde is referred to as "Track". It 

essentially assumes a homogeneous atmosphere uniformly translating horizontally as a function of 

altitude over the averaging period. Any change in wind speed or direction at a given altitude is not 

accounted for in this scheme. After performing this translation of the lidar data, the same variable 

averaging technique used in the "Var" method was then used. Figure 10 illustrates the use of these 

different techniques in a comparison with a Vaisala RS90 radiosonde on the night of November 19 

at the m d  of the mission. 

The left panel presents the comparison of the individual profiles, while the middle panel shows 

the percentage difference of the three methods of processing the SRL data with respect to RS90. 

On the right is shown the number of one-minute profiles used as a function of altitude for the 

three lidar averaging techniques. There is good general agreement among all 4 profiles plotted. 

However, on the left one can see that between the altitudes of 7-8 k m  the straight summation 

technique, which used a 29 minute average at all altitudes, diverges from the other measurements 

by more than 50%. Both the variable sum and track-sonde techniques used between 3 and 7 profiles 

in this altitude range implying that there was significant atmospheric variation during the period 
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sampled by the "Sum" technique that was not sampled using the other techniques. Between 1 

and 2 km, both the simple-sum and track-sonde techniques diverge from the radiosonde and the 

variable-sum results due presumably to atmospheric variation captured by those techniques that 

was not sampled by the variable-sum technique. The comparisons detailed in Table 1 indicated 

that, of the three techniques, the variable sum technique yielded a slope that is closest to unity, 

an intercept that is closest to zero, shows the lowest mean variability, and also provides the best 

overall agreement with the fully corrected RS9X. For these reasons the variable sum technique of 

analyzing the SRL data was judged to be preferable based on the AWEX measurements. 
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12 Figure Captions 

1. Ensemble comparisons of radiances observed by AIRS and calculations of radiances using 

version 3 of the AIRS fast model, SARTA, to demonstrate the state of the AIRS fast model 

validation effort as of February, 2003. Three sets of water vapor input data acquired in co- 

ordination with Aqua overpasses are studied: 1) SRL water vapor measurements from fall 

2002 at GSFC, 2) nighttime RS-90 radiosondes launched at the SGP site, 3) daytime RS-90 

radiosondes launched at the SGP site. 

2. Left: An analysis of the precipitable water measurements from the SuomiNet GPS and the 

U.S. DOE microwave radiometer at the Southern Great Plains Climate Research Facility. 

There is a mean offset of -2.4%, which is withm the absolute uncertainty of the MWK. The 

best fit regression is shown with a dashed line. The solid line indicates perfect 1-1 correlation. 

Right: The same data as plotted on the left except this time divided by time of day. The data 

are grouped in bins of 1 hour each. The error bars indicate the standard deviation of the 

comparison within each 1 hour interval. Sunrise and sunset were at approximately 12 and 24 

UT. A small diurnal bias between GPS and MWR is observed. 

3. Mean profile comparisons of SRL and the RS9X using the three methods of analyzing the 

SRL profiles described in the text. Layer averages of l-km have been used and the error bars 

indicate standard deviation within each l-km interval. On the right is shown the number of 
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comparisons at each altitude. 

4. A comparison of the mean precipitable water measured by the various sensors during AWEX 

and the reference CFH sensor. A comparison of the mean bias between the various sensors 

and the reference CFH sensor during AWEX based on a regression analysis. 

5 .  A comparison of mean upper tropospheric measurements of SRL (using the three different 

methods of averaging the SRL data described in the text) and RS-9X after fully correcting 

both sensors. Three methods of quantifying percentage difference are displayed and ex- 

plained in the text. In general, agreement between SRL and RS9X is better than 5% using 

any of the techniques. The error bars represent the standard deviation, while the shaded region 

represents twice the standard error. 

6. The percentage difference between SRL water vapor mixing ratio and RS9X as a function of 

mixing ratio amount and altitude. This comparison isolates the two variables that influence 

the magnitude of the random uncertainty in the Raman lidar water vapor measurements during 

AWEX-G. 

7. An Obs-Calc comparison of the original SRL water vapor profiles from September - Novem- 

ber 2002 and those released in late 2004 after applying the corrections described here. Both 

comparisons use the january 2004 version of the A I R S  fast model. The calculations based on 

the updated Sl2L profiles agree in the mean with the AIRS observations within f0.5K. 

8. Left: Comparison of water vapor profiles from SRL and Aqua retrieval. There is a persistent 
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moist bias to the retrievals in the mid-troposphere. Right: Comparison of precipitable water 

from a SuomiNet GPS and Aqua retrievals showing a similar wet bias to the retrievals 

9. An illustration of the three profile averaging schemes that were investigated for the processing 

of the Raman lidar water vapor mixing ratio data. "Sum1' refers to using the same temporal 

averaging as a function of altitude, in this case 29 minutes. "Var" refers to using a variable 

temporal average as a function of altitude in order to maintain the random error below a 

fixed value here chosen to be 10%. An upper limit of 29 profiles is also selected in this 

case. "Track" refers to a technique that attempts to address the fact that the radiosonde move 

downwind with altitude whereas the lidar can measure purely vertically. A variable temporal 

smoothing is also employed in this technique. 
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SRL vs RS9X Regression Statistics PercDiff 

Table 3:  Full profile regression comparison of SRL water vapor mixing ratio profiles and RS9X 
during AWEX. The columns, in order are, the number of profiles compared, the number of ordered 
pairs of points used in the regressions, the slope and intercept of the best fit line. The correlation 
coefficient of the regression and the mean difference between the best fit line and the SRL data. 
The last column gives mean percentage difference, defined as 100* Mean[(SRL-RS9X)/CFH]. The 
standard deviation and, in parentheses, the standard error of the mean percentage differences are 
also given 

SRL. (Sum) 

SRL (Var) 

SRL (Track) 

I 

13 160 1.01 -0.013 0.998 0.004 1.3&23.9(6.6) 

13 160 1.01 -0.007 0.998 0.009 1.7&1 4.8(4.1) 

12 155 1.01 0.014 0.998 0.004 2 . 4 1  15.2(4.4) 

UT( 7kni-trop)vsCFH 

Sensor 

RS-92 

RS80-H 

Table 2: Upper troposphere bias comparison of various sensors and CFH during AWEX based on 
three analysis methods. The slope, intercept, number of ordered pairs and correlation coefficient 
are given. Also provided are the mean difference (Mean[X-CFH]) between the individual sensors 
and CFH in units of g/kg, the percentage difference calculated two ways, the standard deviation, 
and in parentheses, the standard error of the mean difference. 

Regression Statistics 

PW.-PWc MR S , -MR Ci M R  S , - M R  CL - 
N p r o f s  N p t s  m b ( g W  R2 a(S/k7) ;‘wc M R  C,  M R-Ci 

2370 0.988 -0.0002 0.997 -0.0024 -1.73k4.86(1.7) -1.31&8.96(3.2) -0.71 &19.5(6.9) 

2940 0.976 -0.0040 0.994 0,0080 -5.92&6.71(2.2) -4.86&13.6(4.5) -2.95&27.6(9.2) 

8 

9 

13 Tables 

SnowWhite 
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Table 3: Upper troposphere bias comparison of the three methods of analyzing SRL data and RS-9X 
during AWEX. See Table 1 for the definitions of the quantities. 

14 Figures 
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Obs-Calc (Feb, 2003). SRL (solid), RSSON (dash). RSSOD (dot-dash) 
3 I 
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Figure 1 : Ensemble comparisons of radiances observed by AIRS and calculations of radiances us- 
ing version 3 of the A I R S  fast model, SARTA, to demonstrate the state of the AIRS fast model 
validation effort as of February, 2003. Three sets of water vapor input data acquired in coordina- 
tion with Aqua overpasses are studied: 1) SRL water vapor measurements fi-om fall 2002 at GSFC, 
2) nighttime RS-90 radiosondes launched at the SGP site, 3) daytime RS-90 radiosondes launched 
at the SGP site. 
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Figure 2: Left: An analysis of the precipitable water measurements from the SuomiNet GPS and the 
U.S. DOE microwave radiometer at the Southern Great Plains Climate Research Facility. There 
is a mean offset of -2.4%, which is within the absolute uncertainty of the MWR. The best fit 
regression is shown with a dashed line. The solid line indicates perfect 1-1 correlation. Right: The 
same data as plotted on the left except this time divided by time of day. The data are grouped in 
bins of 1 hour each. The error bars indicate the standard deviation of the comparison within each 
1 hour interval, Sunrise and sunset were at approximately 12 and 24 UT. A small diurnal bias 
between GPS and MWR is observed. 
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Figure 3: Mean profile comparisons of SRL and the RSBX using the three methods of analyzing 
the SRL profiles described in the text. Layer averages of l-km have been used and the error 
bars indicate standard deviation within each l-km interval. On the right is shown the number of 
comparisons at each altitude. 
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Figure 4: A comparison of the mean precipitable water measured by the various sensors during 
AWEX and the reference CFH sensor. A comparison of the mean bias between the various sensors 
and the reference CFH sensor during AWEX based on a regression analysis. 
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Figure 5 :  A comparison of mean upper tropospheric measurements of SRL (using the three dif- 
ferent methods of averaging the SRL data described in the text) and RS-9X after fully correcting 
both sensors. Three methods of quantifying percentage difference are displayed and explained in 
the text. In general, agreement between SRL and RS9X is better than 5% using any of the tech- 
niaues. The error bars represent the standard deviation, while the shaded region represents twice 
th i  standard error. 
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Figure 6: The percentage difference between SRI, water vapor mixing ratio and RS9X as a function 
of mixing ratio amount and altitude. This comparison isolates the two variables that influence 
the magnitude of the random uncertainty in the Raman lidar water vapor measurements during 
AWEX-G. 
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Obs-Calc: Orig-dash, Corr-solid 

6 -1 - 

Figure 7: An Obs-Calc comparhon of the original SRL water vapor profiles from September - No- 
vember 2002 and those released in late 2004 after applying the corrections described here. Both 
comparisons use the January 2004 version of the AIRS fast model. The calculations based on the 
updated SRL profiles agree in the mean with the AIRS observations within 4~0.5K. 

TWP-Phase2 RS-90 (Orig-dash Corr-solid 1 
-I _ _ _  ~ I ____ _ _ _ - I _ I  I - -  1 

I 

-_---- A -I 4 

1300 1350 1400 1450 1500 1550 1600 
Wavenumber icrn-'\ 

Figure 8: A comparison of AIRS observations and calculations using the AIRS fast model for 13 
overpasses of the ARM TWP site. Two sets of water vapor input information have been used in this 
figure: the original RS-90 radiosondes prior to application of the timelag and AWEX corrections 
(dashed) and after applying those corrections (solid). The mean affect of the corrections is to 
increase upper tropospheric RH by approximately 5% in this example. However, for individual 
sondes the magnitude of these corrections can exceed 40% in parts of the upper troposphere [ 5 ] .  
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Figure 9: Left: Comparison of water vapor profiles from SRL and Aqua retrieval. There is a persis- 
tent moist bias to the retrievals in the mid-troposphere. Right: Comparison of precipitable water 
from a SuomiNet GPS and Aqua retrievals showing a similar wet bias to the retrievals. 
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Figure 10: An illustration of the three profile averaging schemes that were investigated for the 
processing of the Raman lidar water vapor mixing ratio data. 'Y3urn" refers to using the same 
temporal averaging as a function of altitude, in this case 29 minutes. "Var" refers to using a vari- 
able temporal average as a function of altitude in order to maintain the random error below a fixed 
value here chosen to be 10%. An upper limit of 29 profiles is also selected in this case. "Track" 
refers to a technique that attempts to address the fact that the radiosonde move downwind with 
altitude whereas the lidar can measure purely vertically. A variable temporal smoothing is also 
employed in this technique. 
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Analysis of Raman lidar and radiosonde measurements from fhe 
AWEX-G field campaign and its relation to Aqua validation - 

Popular Summary 

Downward looking infrared satellite sensors such as the Atmospheric Infrared Sounder 
(AIRS) on the AQUA satellite, record light emitted from the earth and atmosphere at 
high spectral resolution. These measurements can be used to infer the atmospheric 
concentrations of numerous trace gasses including water vapor. In order to validate the 
measurements of AIRS, numerous profile measurements of water vapor and other 
quantities have been made. However, early in the AQUA validation effort it was learned 
that profiling technologies possessed measurement errors that made the AIRS validation 
effort difficult. The AIRS Water Vapor Experiment - Ground (AWEX-G) was held in 
October - November, 2003 in order to study the technologies in use in AQUA validation 
and improve the accuracy of these measurements for validation purposes. This paper 
describes those activities and the results that Raman lidar and Vaisala RS90/92 
radiosondes are found to agree in their water vapor measurements to within 5% of the 
reference sensor, which is calculated to absolute accuracy of approximately 5%. 


